skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rockefeller, Golden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many multiagent domains, and particularly in tightly coupled domains, teasing an agent’s contribution to the system performance based on a single episodic return is difficult. This well-known difficulty hits state-to-action mapping approaches such as neural net- works trained by evolutionary algorithms particularly hard. This paper introduces fitness critics, which leverage the expected fitness to evaluate an agent’s performance. This approach turns a sparse performance metric (policy evaluation) into a dense performance metric (state-action evaluation) by relating the episodic feedback to the state-action pairs experienced during the execution of that policy. In the tightly-coupled multi-rover domain (where multiple rovers have to perform a particular task simultaneously), only teams using fitness critics were able to demonstrate effective learning on tasks with tight coupling while other coevolved teams were unable to learn at all. 
    more » « less